This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296245 #10 Dec 14 2017 14:29:39 %S A296245 1,2,28,66,143,273,497,870,1488,2502,4159,6857,11241,18354,29884, %T A296245 48562,78807,127769,207017,335270,542816,878662,1422103,2301441, %U A296245 3724273,6026555,9751728,15779244,25531996,41312329,66845481,108159035,175005812,283166216 %N A296245 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n)^2, where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences. %C A296245 The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). %C A296245 ***** %C A296245 Guide to related sequences, each determined by a complementary equation and initial values (a(0),a(1); b(0),b(1),b(2)): %C A296245 ***** %C A296245 Complementary equation a(n) = a(n-1) + a(n-2) + b(n)^2, %C A296245 Initial values (1,2; 3,4,5): A296245 %C A296245 Initial values (1,3; 2,4,5): A296246 %C A296245 Initial values (1,4; 2,3,5): A296247 %C A296245 Initial values (2,3; 1,4,5): A296248 %C A296245 Initial values (2,4; 1,3,5): A296249 %C A296245 Initial values (3,4; 1,2,5): A296250 %C A296245 ***** %C A296245 Complementary equation a(n) = a(n-1) + a(n-2) + b(n-1)^2, %C A296245 Initial values (1,2; 3,4): A296251 %C A296245 Initial values (1,3; 2,4): A296252 %C A296245 Initial values (1,4; 2,3): A296253 %C A296245 Initial values (2,3; 1,4): A296254 %C A296245 Initial values (2,4; 1,3): A296255 %C A296245 Initial values (3,4; 1,2): A296256 %C A296245 ***** %C A296245 Complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)^2, %C A296245 Initial values (1,2; 3): A296257 %C A296245 Initial values (1,3; 2): A296258 %C A296245 Initial values (2,3; 2): A296259 %C A296245 ***** %C A296245 Complementary equation a(n) = a(n-1) + a(n-2) + b(n-1)*b(n-2), %C A296245 Initial values (1,2; 3,4): A295367 %C A296245 Initial values (1,3; 2,4): A295363 %C A296245 Initial values (1,4; 2,3): A296262 %C A296245 Initial values (2,3; 1,4): A296263 %C A296245 Initial values (2,4; 1,3): A296264 %C A296245 Initial values (3,4; 1,2): A296265 %C A296245 ***** %C A296245 Complementary equation a(n) = a(n-1) + a(n-2) + b(n)*b(n-2), %C A296245 Initial values (1,2; 3,4,5): A296266 %C A296245 Initial values (1,3; 2,4,5): A296267 %C A296245 Initial values (1,4; 2,3,5): A296268 %C A296245 Initial values (2,3; 1,4,5): A296269 %C A296245 Initial values (2,4; 1,3,5): A296270 %C A296245 Initial values (3,4; 1,2,5): A296271 %C A296245 ***** %C A296245 Complementary equation a(n) = a(n-1) + a(n-2) + b(n)*b(n-1), %C A296245 Initial values (1,2; 3,4,5): A296272 %C A296245 Initial values (1,3; 2,4,5): A296273 %C A296245 Initial values (1,4; 2,3,5): A296274 %C A296245 Initial values (2,3; 1,4,5): A296275 %C A296245 Initial values (2,4; 1,3,5): A296276 %C A296245 Initial values (3,4; 1,2,5): A296277 %C A296245 ***** %C A296245 Complementary equation a(n) = a(n-1) + a(n-2) + b(n)*b(n-1)*b(n-2), %C A296245 Initial values (1,2; 3,4,5): A296278 %C A296245 Initial values (1,3; 2,4,5): A296279 %C A296245 Initial values (1,4; 2,3,5): A296280 %C A296245 Initial values (2,3; 1,4,5): A296281 %C A296245 Initial values (2,4; 1,3,5): A296282 %C A296245 Initial values (3,4; 1,2,5): A296283 %C A296245 ***** %C A296245 Complementary equation a(n) = a(n-1) + a(n-2) + n*b(n-2), %C A296245 Initial values (1,2; 3): A296284 %C A296245 Initial values (1,2; 4): A296285 %C A296245 Initial values (1,3; 2): A296286 %C A296245 Initial values (2,3; 1): A296287 %C A296245 ***** %C A296245 Complementary equation a(n) = a(n-1) + a(n-2) + n*b(n-1), %C A296245 Initial values (1,2; 3,4): A296288 %C A296245 Initial values (1,3; 2,4): A296289 %C A296245 Initial values (1,4; 2,3): A296290 %C A296245 Initial values (2,3; 1,4): A296291 %C A296245 Initial values (2,4; 1,3): A296292 %C A296245 ***** %C A296245 Complementary equation a(n) = a(n-1) + a(n-2) + n*b(n), %C A296245 Initial values (1,2; 3,4,5): A296293 %C A296245 Initial values (1,3; 2,4,5): A296294 %C A296245 Initial values (1,4; 2,3,5): A296295 %C A296245 Initial values (2,3; 1,4,5): A296296 %C A296245 Initial values (2,4; 1,3,5): A296297 %H A296245 Clark Kimberling, <a href="/A296245/b296245.txt">Table of n, a(n) for n = 0..1000</a> %H A296245 Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Kimberling/kimberling26.html">Complementary equations</a>, J. Int. Seq. 19 (2007), 1-13. %F A296245 a(n) = H + R, where H = f(n-1)*a(0) + f(n)*a(1) and R = f(n-1)*b(2)^2 + f(n-2)*b(3)^2 + ... + f(2)*b(n-1)^2 + f(1)*b(n)^2, where f(n) = A000045(n), the n-th Fibonacci number. %e A296245 a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5; %e A296245 a(2) = a(0) + a(1) + b(2)^2 = 28 %e A296245 Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, ...) %t A296245 a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5; %t A296245 a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n]^2; %t A296245 j = 1; While[j < 12, k = a[j] - j - 1; %t A296245 While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; %t A296245 Table[a[n], {n, 0, k}] (* A296245 *) %t A296245 Table[b[n], {n, 0, 20}] (* complement *) %Y A296245 Cf. A001622, A295862, A296000. %K A296245 nonn,easy %O A296245 0,2 %A A296245 _Clark Kimberling_, Dec 10 2017