A296246 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n)^2, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 3, 29, 68, 146, 278, 505, 883, 1509, 2536, 4214, 6946, 11385, 18587, 30261, 49172, 79794, 129366, 209601, 339451, 549581, 889608, 1439814, 2330098, 3770641, 6101523, 9873064, 15975548, 25849636, 41826273, 67677065, 109504563, 177182924, 286688856
Offset: 0
Examples
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5; a(2) = a(0) + a(1) + b(2) = 29. Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, ...).
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; b[2] = 5; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n]^2; j = 1; While[j < 6 , k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; Table[a[n], {n, 0, k}] (* A296246 *) Table[b[n], {n, 0, 20}] (* complement *)
Formula
a(n) = H + R, where H = f(n-1)*a(0) + f(n)*a(1) and R = f(n-1)*b(2)^2 + f(n-2)*b(3)^2 + ... + f(2)*b(n-1)^2 + f(1)*b(n)^2, where f(n) = A000045(n), the n-th Fibonacci number.
Comments