A296250 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n)^2, where a(0) = 3, a(1) = 4, b(0) = 1, b(1) = 2, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
3, 4, 32, 72, 153, 289, 523, 912, 1556, 2612, 4337, 7145, 11707, 19108, 31104, 50536, 82001, 132937, 215379, 348800, 564708, 914084, 1479417, 2394177, 3874323, 6269284, 10144448, 16414632, 26560041, 42975762, 69536959, 112513946, 182052201, 294567516
Offset: 0
Examples
a(0) = 3, a(1) = 4, b(0) = 1, b(1) = 2, b(2) = 5; a(2) = a(0) + a(1) + b(2)^2 = 32; Complement: (b(n)) = (1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 3; a[1] = 4; b[0] = 1; b[1] = 2; b[2] = 5; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n]^2; j = 1; While[j < 6 , k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; Table[a[n], {n, 0, k}] (* A296250 *) Table[b[n], {n, 0, 20}] (* complement *)
Formula
a(n) = H + R, where H = f(n-1)*a(0) + f(n)*a(1) and R = f(n-1)*b(2)^2 + f(n-2)*b(3)^2 + ... + f(2)*b(n-1)^2 + f(1)*b(n)^2, where f(n) = A000045(n), the n-th Fibonacci number.
Comments