A296256 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1)^2, where a(0) = 3, a(1) = 4, b(0) = 1, b(1) = 2, and (a(n)) and (b(n)) are increasing complementary sequences.
3, 4, 11, 40, 87, 176, 327, 584, 1011, 1739, 2919, 4854, 7998, 13108, 21395, 34827, 56583, 91810, 148834, 241128, 390491, 632195, 1023311, 1656182, 2680222, 4337188, 7018251, 11356339, 18375551, 29732914, 48109554, 77843624, 125954403, 203799323, 329755095
Offset: 0
Examples
a(0) = 3, a(1) = 4, b(0) = 1, b(1) = 2; a(2) = a(0) + a(1) + b(1)^2 = 11; Complement: (b(n)) = (1, 2, 5, 6, 7, 8, 9, 10, 12, 13, 14, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 3; a[1] = 4; b[0] = 1; b[1] = 2; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n-1]^2; j = 1; While[j < 6 , k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; Table[a[n], {n, 0, k}] (* A296256 *) Table[b[n], {n, 0, 20}] (* complement *)
Formula
a(n) = H + R, where H = f(n-1)*a(0) + f(n)*a(1) and R = f(n-1)*b(1)^2 + f(n-2)*b(2)^2 + ... + f(2)*b(n-2)^2 + f(1)*b(n-1)^2, where f(n) = A000045(n), the n-th Fibonacci number.
Comments