This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296260 #21 Dec 18 2017 22:52:57 %S A296260 1,1,17,111,762,4095,19941,84825,329214,1168740,3858348,11920740, %T A296260 34773590,96282900,254473884,644637204,1571330916,3697182450, %U A296260 8421423582,18615637950,40023753924,83859017814,171530071362,343059613650,671825586021,1289904147324,2430974136780 %N A296260 Number of preference profiles with 4 alternatives and n agents (IANC model). %H A296260 Ö. Egecioglu, <a href="https://doi.org/10.1515/MCMA.2009.014">Uniform generation of anonymous and neutral preference profiles for social choice rules</a>, Monte Carlo Methods and Applications, 15(3), Jan 2009, 241-255. %F A296260 if n == 0 mod 12, a(n) = C(n+23,23)/24 + C(n/2+11,11)*3/8 + C(n/3+7,7)/3+C(n/4+5,5)/4; %F A296260 if n == 1,5,7,11 mod 12, a(n) = C(n+23,23)/24; %F A296260 if n == 2,10 mod 12, a(n) = C(n+23,23)/24 + C(n/2+11,11)*3/8; %F A296260 if n == 3,9 mod 12, a(n) = C(n+23,23)/24 + C(n/3+7,7)/3; %F A296260 if n == 4,8 mod 12, a(n) = C(n+23,23)/24 + C(n/2+11,11)*3/8 +C(n/4+5,5)/4; %F A296260 if n == 6 mod 12, a(n) = C(n+23,23)/24 + C(n/2+11,11)*3/8 + C(n/3+7,7)/3. %t A296260 Array[Binomial[# + 23, 23]/24 + Which[Divisible[#1, 12], 3 Binomial[#1/2 + 11, 11]/8 + Binomial[#1/3 + 7, 7]/3 + Binomial[#1/4 + 5, 5]/4, MemberQ[{1, 5, 7, 11}, #2], 0, MemberQ[{2, 10}, #2], 3 Binomial[#1/2 + 11, 11]/8, MemberQ[{3, 9}, #2], Binomial[#1/3 + 7, 7]/3, MemberQ[{4, 8}, #2], 3 Binomial[#1/2 + 11, 11]/8 + Binomial[#1/4 + 5, 5]/4, True, 3 Binomial[#1/2 + 11, 11]/8 + Binomial[#1/3 + 7, 7]/3 ] & @@ {#, Mod[#, 12]} &, 26] (* _Michael De Vlieger_, Dec 18 2017 *) %Y A296260 Cf. A037240 for 3 alternatives. %K A296260 nonn %O A296260 1,3 %A A296260 _Alexander Karpov_, Dec 15 2017 %E A296260 More terms from _Michael De Vlieger_, Dec 18 2017