A296262 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)*b(n-1), where a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 4, 11, 30, 71, 143, 270, 485, 845, 1450, 2451, 4083, 6744, 11067, 18083, 29456, 47881, 77717, 126018, 204197, 330721, 535470, 866791, 1402911, 2270404, 3674071, 5945287, 9620257, 15566536, 25187849, 40755507, 65944546, 106701313, 172647191, 279349910
Offset: 0
Examples
a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, a(2) = a(0) + a(1) + b(0)*b(1) = 11 Complement: (b(n)) = (2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..999
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 1; a[1] = 4; b[0] = 2; b[1] = 3; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] b[n - 2]; j = 1; While[j < 10, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; u = Table[a[n], {n, 0, k}]; (* A296262 *) Table[b[n], {n, 0, 20}] (* complement *)
Comments