A296263 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)*b(n-1), where a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.
2, 3, 9, 32, 71, 145, 272, 497, 879, 1508, 2543, 4233, 6986, 11459, 18717, 30482, 49541, 80403, 130364, 211229, 342099, 553880, 896579, 1451109, 2348390, 3800255, 6149457, 9950582, 16100969, 26052574, 42154665, 68208429, 110364354, 178574115, 288939875
Offset: 0
Examples
a(0) = 2, a(1) = 3, b(0) = 2, b(1) = 1, b(2) = 4 a(2) = a(0) + a(1) + b(0)*b(1) = 9 Complement: (b(n)) = (1, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 2; a[1] = 3; b[0] = 1; b[1] = 4; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] b[n - 2]; j = 1; While[j < 10, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; u = Table[a[n], {n, 0, k}]; (* A296263 *) Table[b[n], {n, 0, 20}] (* complement *)
Comments