A296264 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)*b(n-1), where a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
2, 4, 9, 28, 67, 137, 260, 477, 847, 1456, 2459, 4097, 6766, 11103, 18141, 29550, 48033, 77963, 126416, 204841, 331763, 537156, 869519, 1407325, 2277546, 3685654, 5964070, 9650654, 15615716, 25267426, 40884264, 66152880, 107038404, 173192616, 280232426
Offset: 0
Examples
a(0) = 2, a(1) = 4, b(0) = 2, b(1) = 1, b(2) = 3; a(2) = a(0) + a(1) + b(0)*b(1) = 9; Complement: (b(n)) = (1, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 2; a[1] = 4; b[0] = 1; b[1] = 3; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] b[n - 2]; j = 1; While[j < 10, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; u = Table[a[n], {n, 0, k}]; (* A296264 *) Table[b[n], {n, 0, 20}] (* complement *)
Comments