A296265 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)*b(n-1), where a(0) = 3, a(1) = 4, b(0) = 1, b(1) = 2, and (a(n)) and (b(n)) are increasing complementary sequences.
3, 4, 9, 23, 62, 127, 245, 452, 807, 1391, 2354, 3927, 6491, 10658, 17421, 28385, 46148, 74913, 121481, 196856, 318865, 516321, 835836, 1352859, 2189451, 3543122, 5733443, 9277495, 15011930, 24290481, 39303533, 63595204, 102899997, 166496533, 269397936
Offset: 0
Examples
a(0) = 3, a(1) = 4, b(0) = 2, b(1) = 1, b(2) = 2; a(2) = a(0) + a(1) + b(0)*b(1) = 9; Complement: (b(n)) = (1, 2, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..999
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 3; a[1] = 4; b[0] = 1; b[1] = 2; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] b[n - 2]; j = 1; While[j < 10, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; Table[a[n], {n, 0, k}]; (* A296265 *) Table[b[n], {n, 0, 20}] (* complement *)
Comments