A296266 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)*b(n), where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 2, 18, 44, 97, 189, 349, 618, 1066, 1804, 3013, 4985, 8193, 13402, 21850, 35556, 57746, 93701, 151887, 246071, 398486, 645132, 1044242, 1690049, 2735019, 4425851, 7161710, 11588460, 18751130, 30340613, 49092831, 79434599, 128528654, 207964548, 336494570
Offset: 0
Examples
a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 1, b(2) = 4, b(3) = 5; a(2) = a(0) + a(1) + b(0)*b(2) = 18; Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..999
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2] b[n]; j = 1; While[j < 10, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; Table[a[n], {n, 0, k}]; (* A296266 *) Table[b[n], {n, 0, 20}] (* complement *)
Comments