A296267 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)*b(n), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 3, 14, 41, 90, 179, 332, 591, 1022, 1733, 2898, 4811, 7917, 12983, 21188, 34494, 56042, 90935, 147417, 238835, 386780, 626190, 1013594, 1640459, 2654781, 4296023, 6951644, 11248566, 18201170, 29450759, 47653017, 77104931, 124759172, 201865398, 326625938
Offset: 0
Examples
a(0) = 1, a(1) = 3, b(0) = 3, b(1) = 2, b(2) = 4, b(3) = 5; a(2) = a(0) + a(1) + b(0)*b(2) = 14; Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; b[2] = 5; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2] b[n]; j = 1; While[j < 10, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; Table[a[n], {n, 0, k}]; (* A296267 *) Table[b[n], {n, 0, 20}] (* complement *)
Comments