A296268 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)*b(n), where a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 4, 15, 37, 87, 172, 322, 574, 995, 1689, 2827, 4684, 7719, 12641, 20648, 33612, 54620, 88631, 143691, 232805, 377024, 610404, 988052, 1599131, 2587911, 4187825, 6776576, 10965300, 17742836, 28709159, 46453083, 75163397, 121617704, 196782431, 318401539
Offset: 0
Examples
a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, b(2) = 5; a(2) = a(0) + a(1) + b(0)*b(2) = 15; Complement: (b(n)) = (2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 1; a[1] = 4; b[0] = 2; b[1] = 3; b[2] = 5; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2] b[n]; j = 1; While[j < 10, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; Table[a[n], {n, 0, k}]; (* A296268 *) Table[b[n], {n, 0, 20}] (* complement *)
Comments