A296269 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)*b(n), where a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
2, 3, 10, 37, 82, 167, 312, 567, 987, 1697, 2852, 4744, 7820, 12819, 20927, 34069, 55356, 89824, 145620, 235927, 382075, 618577, 1001276, 1620528, 2622532, 4243843, 6867215, 11111957, 17980132, 29093112, 47074332, 76168599, 123244155, 199414084, 322659643
Offset: 0
Examples
a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5; a(2) = a(0) + a(1) + b(0)*b(2) = 10; Complement: (b(n)) = (1, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 2; a[1] = 3; b[0] = 1; b[1] = 4; b[2] = 5; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2] b[n]; j = 1; While[j < 10, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; Table[a[n], {n, 0, k}]; (* A296269 *) Table[b[n], {n, 0, 20}] (* complement *)
Comments