A296270 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)*b(n), where a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
2, 4, 11, 33, 79, 160, 302, 542, 952, 1624, 2744, 4563, 7531, 12349, 20168, 32840, 53368, 86607, 140415, 227505, 368448, 596528, 965600, 1562803, 2529131, 4092717, 6622688, 10716304, 17339952, 28057310, 45398382, 73456916, 118856593, 192314877, 311172913
Offset: 0
Examples
a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, b(2) = 5; a(2) = a(0) + a(1) + b(0)*b(2) = 11; Complement: (b(n)) = (1, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 2; a[1] = 4; b[0] = 1; b[1] = 3; b[2] = 5; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2] b[n]; j = 1; While[j < 10, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; Table[a[n], {n, 0, k}]; (* A296270 *) Table[b[n], {n, 0, 20}] (* complement *)
Comments