A296271 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)*b(n), where a(0) = 3, a(1) = 4, b(0) = 1, b(1) = 2, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
3, 4, 12, 28, 75, 151, 289, 520, 908, 1558, 2620, 4373, 7217, 11845, 19350, 31518, 51228, 83145, 134813, 218441, 353782, 572798, 927204, 1500677, 2428635, 3930122, 6359656, 10290738, 16651417, 26943243, 43595815, 70540282, 114137392, 184679042, 298817877
Offset: 0
Examples
a(0) = 3, a(1) = 4, b(0) = 1, b(1) = 2, b(2) = 5; a(2) = a(0) + a(1) + b(0)*b(2) = 11; Complement: (b(n)) = (1, 2, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 3; a[1] = 4; b[0] = 1; b[1] = 2; b[2] = 5; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2] b[n]; j = 1; While[j < 10, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; Table[a[n], {n, 0, k}]; (* A296271 *) Table[b[n], {n, 0, 20}] (* complement *)
Comments