A296272 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1)*b(n), where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 2, 23, 55, 120, 231, 423, 744, 1277, 2153, 3586, 5921, 9717, 15878, 25867, 42051, 68260, 110691, 179371, 290524, 470423, 761547, 1232620, 1994869, 3228245, 5223926, 8453041, 13677897, 22131930, 35810883, 57943935, 93756008, 151701203, 245458543, 397161152
Offset: 0
Examples
a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5; a(2) = a(0) + a(1) + b(1)*b(2) = 23; Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] b[n]; j = 1; While[j < 10, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; Table[a[n], {n, 0, k}]; (* A296272 *) Table[b[n], {n, 0, 20}] (* complement *)
Comments