A296273 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1)*b(n), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 3, 24, 57, 123, 236, 431, 757, 1298, 2187, 3641, 6010, 9861, 16111, 26244, 42661, 69247, 112288, 181955, 294705, 477166, 772446, 1250262, 2023410, 3274428, 5298650, 8573948, 13873528, 22448468, 36323052, 58772642, 95096884, 153870786, 248969002, 402841194
Offset: 0
Examples
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5; a(2) = a(0) + a(1) + b(1)*b(2) = 24; Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; b[2] = 5; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] b[n]; j = 1; While[j < 10, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; Table[a[n], {n, 0, k}]; (* A296273 *) Table[b[n], {n, 0, 20}] (* complement *)
Comments