A296274 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1)*b(n), where a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 4, 20, 54, 116, 226, 414, 730, 1254, 2116, 3526, 5824, 9560, 15624, 25456, 41386, 67184, 108969, 176615, 286090, 463257, 749947, 1213854, 1964503, 3179113, 5144428, 8324411, 13469769, 21795172, 35265997, 57062291, 92329478, 149393029, 241723839, 391118274
Offset: 0
Examples
a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, b(2) = 5; a(2) = a(0) + a(1) + b(1)*b(2) = 20; Complement: (b(n)) = (2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 1; a[1] = 4; b[0] = 2; b[1] = 3; b[2] = 5; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] b[n]; j = 1; While[j < 10, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; Table[a[n], {n, 0, k}]; (* A296274 *) Table[b[n], {n, 0, 20}] (* complement *)
Comments