A296275 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1)*b(n), where a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
2, 3, 25, 58, 125, 239, 436, 765, 1311, 2208, 3675, 6065, 9950, 16255, 26477, 43038, 69857, 113275, 183552, 297289, 481347, 779188, 1261159, 2041049, 3302964, 5344825, 8648659, 13994414, 22644065, 36639535, 59284722, 95925447, 155211429, 251138208, 406351043
Offset: 0
Examples
a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5; a(2) = a(0) + a(1) + b(1)*b(2) = 25; Complement: (b(n)) = (1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 2; a[1] = 3; b[0] = 1; b[1] = 4; b[2] = 5; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] b[n]; j = 1; While[j < 10, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; Table[a[n], {n, 0, k}]; (* A296275 *) Table[b[n], {n, 0, 20}] (* complement *)
Comments