A296276 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1)*b(n), where a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
2, 4, 21, 55, 118, 229, 419, 738, 1267, 2137, 3560, 5879, 9649, 15768, 25689, 41763, 67794, 109937, 178171, 288614, 467337, 756551, 1224538, 1981791, 3207085, 5189688, 8397643, 13588261, 21986896, 35576213, 57564231, 93141634, 150707125, 243850091, 394558622
Offset: 0
Examples
a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, b(2) = 5 a(2) = a(0) + a(1) + b(1)*b(2) = 21 Complement: (b(n)) = (1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 2; a[1] = 4; b[0] = 1; b[1] = 3; b[2] = 5; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] b[n]; j = 1; While[j < 10, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; Table[a[n], {n, 0, k}]; (* A296276 *) Table[b[n], {n, 0, 20}] (* complement *)
Comments