A296278 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)*b(n-1)*b(n), where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 2, 63, 185, 458, 979, 1941, 3640, 6571, 11531, 19818, 33533, 56081, 92974, 153135, 251005, 409954, 667799, 1085733, 1762772, 2859131, 4634047, 7506978, 12156625, 19681153, 31857434, 51560511, 83442305, 135029786, 218501851, 353564373, 572102128, 925705771
Offset: 0
Examples
a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5 a(2) = a(0) + a(1) + b(0)*b(1)*b(2) = 63 Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n-2] b[n - 1] b[n]; j = 1; While[j < 10, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; Table[a[n], {n, 0, k}]; (* A296278 *) Table[b[n], {n, 0, 20}] (* complement *)
Comments