A296281 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)*b(n-1)*b(n), where a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
2, 3, 25, 148, 383, 867, 1754, 3341, 6085, 10746, 18547, 31477, 52754, 87591, 144425, 236912, 387151, 630903, 1026034, 1666177, 2702837, 4381158, 7098347, 11496353, 18614356, 30132633, 48771349, 78930952, 127732061, 206695749, 334463714, 541198733, 875705287
Offset: 0
Examples
a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5 a(2) = a(0) + a(1) + b(0)*b(1)*b(2) = 25 Complement: (b(n)) = (1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 2; a[1] = 3; b[0] = 1; b[1] = 4; b[2] = 5; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n-2] b[n - 1] b[n]; j = 1; While[j < 10, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; Table[a[n], {n, 0, k}]; (* A296281 *) Table[b[n], {n, 0, 20}] (* complement *)
Comments