A296283 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)*b(n-1)*b(n), where a(0) = 3, a(1) = 4, b(0) = 1, b(1) = 2, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
3, 4, 17, 81, 308, 725, 1537, 2982, 5509, 9811, 17036, 29031, 48797, 81188, 134305, 220965, 362110, 591055, 962405, 1564086, 2538635, 4116521, 6670756, 10804827, 17495239, 28321990, 45841589, 74190549, 120061898, 194285183, 314382985, 508707438, 823133263
Offset: 0
Examples
a(0) = 3, a(1) = 4, b(0) = 1, b(1) = 2, b(2) = 5 a(2) = a(0) + a(1) + b(0)*b(1)*b(2) = 17 Complement: (b(n)) = (1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 3; a[1] = 4; b[0] = 1; b[1] = 2; b[2] = 5; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n-2] b[n - 1] b[n]; j = 1; While[j < 10, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; Table[a[n], {n, 0, k}]; (* A296283 *) Table[b[n], {n, 0, 20}] (* complement *)
Comments