This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296285 #4 Dec 13 2017 18:40:39 %S A296285 1,2,11,25,56,111,209,376,657,1123,1900,3166,5234,8595,14053,22903, %T A296285 37244,60470,98074,158943,257457,416883,674868,1092349,1767865, %U A296285 2860914,4629533,7491257,12121658,19613843,31736491,51351388,83088999,134441575,217531832 %N A296285 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + n*b(n-2), where a(0) = 1, a(1) = 2, b(0) = 4, and (a(n)) and (b(n)) are increasing complementary sequences. %C A296285 The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences. %H A296285 Clark Kimberling, <a href="/A296285/b296285.txt">Table of n, a(n) for n = 0..1000</a> %H A296285 Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Kimberling/kimberling26.html">Complementary equations</a>, J. Int. Seq. 19 (2007), 1-13. %e A296285 a(0) = 1, a(1) = 2, b(0) = 4, b(1) = 3, b(2) = 5 %e A296285 a(2) = a(0) + a(1) + 2*b(0) = 11 %e A296285 Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, ...) %t A296285 a[0] = 1; a[1] = 2; b[0] = 4; %t A296285 a[n_] := a[n] = a[n - 1] + a[n - 2] + n*b[n-2]; %t A296285 j = 1; While[j < 10, k = a[j] - j - 1; %t A296285 While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; %t A296285 Table[a[n], {n, 0, k}]; (* A296285 *) %t A296285 Table[b[n], {n, 0, 20}] (* complement *) %Y A296285 Cf. A001622, A296245. %K A296285 nonn,easy %O A296285 0,2 %A A296285 _Clark Kimberling_, Dec 13 2017