A296286 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + n*b(n-2), where a(0) = 1, a(1) = 3, b(0) = 2, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 3, 8, 23, 51, 104, 197, 364, 641, 1104, 1865, 3112, 5145, 8452, 13821, 22528, 36637, 59488, 96485, 156372, 253297, 410173, 664020, 1074791, 1739459, 2814950, 4555163, 7370923, 11926954, 19298805, 31226749, 50526608, 81754477, 132282273, 214038008
Offset: 0
Examples
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5 a(2) = a(0) + a(1) + 2*b(0) = 8 Complement: (b(n)) = (2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 1; a[1] = 3; b[0] = 2; a[n_] := a[n] = a[n - 1] + a[n - 2] + n*b[n-2]; j = 1; While[j < 10, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; Table[a[n], {n, 0, k}]; (* A296286 *) Table[b[n], {n, 0, 20}] (* complement *)
Comments