This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296287 #4 Dec 14 2017 14:22:17 %S A296287 2,3,7,22,49,101,198,362,640,1101,1861,3105,5134,8434,13792,22481, %T A296287 36561,59365,96286,156050,252796,409350,662696,1072644,1735988, %U A296287 2809332,4546074,7356216,11903158,19260302,31164450,50425806,81591376,132018370,213611004 %N A296287 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + n*b(n-2), where a(0) = 2, a(1) = 3, b(0) = 1, and (a(n)) and (b(n)) are increasing complementary sequences. %C A296287 The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences. %H A296287 Clark Kimberling, <a href="/A296287/b296287.txt">Table of n, a(n) for n = 0..1000</a> %H A296287 Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Kimberling/kimberling26.html">Complementary equations</a>, J. Int. Seq. 19 (2007), 1-13. %e A296287 a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5 %e A296287 a(2) = a(0) + a(1) + 2*b(0) = 7 %e A296287 Complement: (b(n)) = (1, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, ...) %t A296287 a[0] = 2; a[1] = 3; b[0] = 1; %t A296287 a[n_] := a[n] = a[n - 1] + a[n - 2] + n*b[n-2]; %t A296287 j = 1; While[j < 10, k = a[j] - j - 1; %t A296287 While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; %t A296287 Table[a[n], {n, 0, k}]; (* A296287 *) %t A296287 Table[b[n], {n, 0, 20}] (* complement *) %Y A296287 Cf. A001622, A296245. %K A296287 nonn,easy %O A296287 0,1 %A A296287 _Clark Kimberling_, Dec 14 2017