A296288 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + n*b(n-1), where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 2, 11, 28, 63, 126, 237, 426, 743, 1277, 2150, 3581, 5911, 9700, 15849, 25819, 41972, 68131, 110481, 179030, 289971, 469505, 760026, 1230129, 1990803, 3221657, 5213240, 8435734, 13649870, 22086561, 35737451, 57825097, 93563700, 151390018, 244955010
Offset: 0
Examples
a(0) = 1, a(1) = 2, b(0) = 1, b(1) = 3, b(2) = 4 a(2) = a(0) + a(1) + 2*b(0) = 11 Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; a[n_] := a[n] = a[n - 1] + a[n - 2] + n*b[n-1]; j = 1; While[j < 10, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; Table[a[n], {n, 0, k}]; (* A296288 *) Table[b[n], {n, 0, 20}] (* complement *)
Comments