A296290 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + n*b(n-1), where a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 4, 11, 30, 65, 130, 243, 436, 759, 1303, 2192, 3649, 6021, 9878, 16137, 26285, 42726, 69351, 112455, 182224, 295139, 477867, 773556, 1252021, 2026225, 3278946, 5305925, 8585708, 13892529, 22479194, 36372743, 58853022, 95226917, 154081160, 249309369
Offset: 0
Examples
a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, b(2) = 5 a(2) = a(0) + a(1) + 2*b(1) = 11 Complement: (b(n)) = (2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 1; a[1] = 4; b[0] = 2; b[1] = 3; a[n_] := a[n] = a[n - 1] + a[n - 2] + n*b[n-1]; j = 1; While[j < 10, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; Table[a[n], {n, 0, k}]; (* A296290 *) Table[b[n], {n, 0, 20}] (* complement *)
Comments