This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296291 #4 Dec 14 2017 14:23:01 %S A296291 2,3,13,31,68,134,250,447,777,1323,2220,3697,6097,10002,16337,26609, %T A296291 43250,70199,113827,184444,298731,483679,782960,1267237,2050845, %U A296291 3318782,5370381,8689973,14061250,22752180,36814450,59567715,96383317,155952253,252336862 %N A296291 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + n*b(n-1), where a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, and (a(n)) and (b(n)) are increasing complementary sequences. %C A296291 The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences. %H A296291 Clark Kimberling, <a href="/A296291/b296291.txt">Table of n, a(n) for n = 0..1000</a> %H A296291 Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Kimberling/kimberling26.html">Complementary equations</a>, J. Int. Seq. 19 (2007), 1-13. %e A296291 a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, b(2) = 5 %e A296291 a(2) = a(0) + a(1) + 2*b(1) = 11 %e A296291 Complement: (b(n)) = (2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, ...) %t A296291 a[0] = 2; a[1] = 3; b[0] = 1; b[1] = 4; %t A296291 a[n_] := a[n] = a[n - 1] + a[n - 2] + n*b[n-1]; %t A296291 j = 1; While[j < 10, k = a[j] - j - 1; %t A296291 While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; %t A296291 Table[a[n], {n, 0, k}]; (* A296291 *) %t A296291 Table[b[n], {n, 0, 20}] (* complement *) %Y A296291 Cf. A001622, A296245. %K A296291 nonn,easy %O A296291 0,1 %A A296291 _Clark Kimberling_, Dec 14 2017