A296293 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + n*b(n), where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 2, 13, 33, 74, 147, 275, 492, 855, 1455, 2450, 4070, 6712, 11003, 17967, 29255, 47542, 77154, 125092, 202683, 328255, 531463, 860290, 1392374, 2253336, 3646435, 5900551, 9547823, 15449270, 24998079, 40448399, 65447594, 105897177, 171346025, 277244528
Offset: 0
Examples
a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5 a(2) = a(0) + a(1) + 2*b(2) = 13 Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5; a[n_] := a[n] = a[n - 1] + a[n - 2] + n*b[n]; j = 1; While[j < 10, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; Table[a[n], {n, 0, k}]; (* A296293 *) Table[b[n], {n, 0, 20}] (* complement *)
Comments