A296295 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + n*b(n), where a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 4, 15, 37, 80, 157, 291, 518, 897, 1523, 2550, 4227, 6969, 11417, 18638, 30340, 49298, 79995, 129689, 210121, 340290, 550936, 891798, 1443355, 2335825, 3779905, 6116510, 9897252, 16014658, 25912867, 41928545, 67842497, 109772194, 177615945, 287389465
Offset: 0
Examples
a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, b(2) = 5 a(2) = a(0) + a(1) + 2*b(2) = 15 Complement: (b(n)) = (2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 1; a[1] = 4; b[0] = 2; b[1] = 3; b[2] = 5; a[n_] := a[n] = a[n - 1] + a[n - 2] + n*b[n]; j = 1; While[j < 10, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; Table[a[n], {n, 0, k}]; (* A296295 *) Table[b[n], {n, 0, 20}] (* complement *)
Comments