This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296296 #4 Dec 14 2017 18:07:35 %S A296296 2,3,15,36,79,155,288,513,889,1510,2529,4193,6914,11328,18494,30107, %T A296296 48921,79385,128702,208524,337706,546755,885033,1432409,2318114, %U A296296 3751248,6070142,9822227,15893265,25716449,41610734,67328268,108940186,176269708,285211220 %N A296296 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + n*b(n), where a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences. %C A296296 The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). See A296245 for a guide to related sequences. %H A296296 Clark Kimberling, <a href="/A296296/b296296.txt">Table of n, a(n) for n = 0..1000</a> %H A296296 Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Kimberling/kimberling26.html">Complementary equations</a>, J. Int. Seq. 19 (2007), 1-13. %e A296296 a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5 %e A296296 a(2) = a(0) + a(1) + 2*b(2) = 15 %e A296296 Complement: (b(n)) = (1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, ...) %t A296296 a[0] = 2; a[1] = 3; b[0] = 1; b[1] = 4; b[2] = 5; %t A296296 a[n_] := a[n] = a[n - 1] + a[n - 2] + n*b[n]; %t A296296 j = 1; While[j < 10, k = a[j] - j - 1; %t A296296 While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; %t A296296 Table[a[n], {n, 0, k}]; (* A296296 *) %t A296296 Table[b[n], {n, 0, 20}] (* complement *) %Y A296296 Cf. A001622, A296245. %K A296296 nonn,easy %O A296296 0,1 %A A296296 _Clark Kimberling_, Dec 14 2017