A296297 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + n*b(n), where a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
2, 4, 16, 38, 82, 160, 296, 526, 910, 1544, 2584, 4282, 7046, 11549, 18847, 30681, 49848, 80886, 131130, 212453, 344063, 557041, 901676, 1459338, 2361686, 3821749, 6184215, 10006801, 16191912, 26199670, 42392602, 68593357, 110987111, 179581689, 290570126
Offset: 0
Examples
a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, b(2) = 5 a(2) = a(0) + a(1) + 2*b(2) = 16 Complement: (b(n)) = (1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 2; a[1] = 4; b[0] = 1; b[1] = 3; b[2] = 5; a[n_] := a[n] = a[n - 1] + a[n - 2] + n*b[n]; j = 1; While[j < 10, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; Table[a[n], {n, 0, k}]; (* A296297 *) Table[b[n], {n, 0, 20}] (* complement *)
Comments