This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296303 #25 Dec 14 2017 03:48:23 %S A296303 1,4,13,34,99,210,559,1164,2531,4940,10735 %N A296303 Number of minimal nonnegative nonzero solutions of the linear Diophantine equation x_1 + 2*x_2 + ... + n*x_n = y_1 + 2*y_2 + ... + n*y_n. %C A296303 Every linear Diophantine equation with arbitrary integer coefficients may be reduced to this one. %C A296303 The minimal nonnegative nonzero solutions form a generating system of the semigroup of all nonnegative solutions. %C A296303 The asymptotic behavior of a(n) is unknown, it is somewhere between a*exp(b*sqrt(n))/(sqrt(n)) and c*exp(d*n)/n with positive real numbers a,b,c,d. %C A296303 A096337 contains the number of minimal nonnegative nonzero solutions of the linear congruence x_1 + 2 x_2 + ... + (n-1) x_{n-1} == 0 (mod n). There is an obvious relation with a(n) since every solution (x_1, ..., x_{n-1}) of the linear congruence yields a solution (x_1, ..., x_{n-1}; 0, 0, ..., 0, k) of the linear Diophantine equation. %H A296303 M. Clausen, A. Fortenbacher, <a href="https://doi.org/10.1016/S0747-7171(89)80025-2">Efficient solution of linear Diophantine equations</a>, J. Symbolic Comput. 8 (1989), 201-216. %H A296303 D. V. Pasechnik, <a href="https://doi.org/10.1016/S0304-3975(00)00229-2">On computing Hilbert bases via the Elliott-MacMahon algorithm</a>, Theor. Comp. Sc. 263 (2001), 37-46. %H A296303 K. Pommerening, <a href="http://www.staff.uni-mainz.de/pommeren/MathMisc/LinDio.pdf">The indecomposable solutions of linear Diophantine equations</a> %F A296303 Lower and upper bounds (proved) are a(n) >= 2*A026905(n) for n >= 3 and a(n) <= A002894(n-1). %e A296303 The 13 minimal solutions for n=3 are (x-coordinates followed by y-coordinates): (0,0,1;0,0,1), (0,0,1;1,1,0), (0,0,1;3,0,0), (0,0,2;0,3,0), (0,1,0;0,1,0), (0,1,0;2,0,0), (0,2,0;1,0,1), (0,3,0;0,0,2), (1,0,0;1,0,0), (1,0,1;0,2,0), (1,1,0;0,0,1), (2,0,0;0,1,0), (3,0,0;0,0,1). %o A296303 (Python) See Pommerening link. %Y A296303 Cf. A096337, A026905, A002894. %K A296303 nonn,hard,more %O A296303 1,2 %A A296303 _Klaus Pommerening_, Dec 10 2017