cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296320 T(n,k)=Number of nXk 0..1 arrays with each 1 horizontally, vertically or antidiagonally adjacent to 1 neighboring 1.

Original entry on oeis.org

1, 2, 2, 3, 6, 3, 4, 11, 11, 4, 6, 27, 32, 27, 6, 9, 60, 96, 96, 60, 9, 13, 132, 295, 434, 295, 132, 13, 19, 301, 902, 1970, 1970, 902, 301, 19, 28, 669, 2747, 8470, 12547, 8470, 2747, 669, 28, 41, 1502, 8380, 37431, 77426, 77426, 37431, 8380, 1502, 41, 60, 3370, 25577
Offset: 1

Views

Author

R. H. Hardin, Dec 10 2017

Keywords

Comments

Table starts
..1....2.....3......4........6.........9..........13...........19............28
..2....6....11.....27.......60.......132.........301..........669..........1502
..3...11....32.....96......295.......902........2747.........8380.........25577
..4...27....96....434.....1970......8470.......37431.......164807........723019
..6...60...295...1970....12547.....77426......490668......3078638......19343899
..9..132...902...8470....77426....676269.....6069953.....54182821.....482859661
.13..301..2747..37431...490668...6069953....78105580....994666167...12644605701
.19..669..8380.164807..3078638..54182821...994666167..18043360170..326902733082
.28.1502.25577.723019.19343899.482859661.12644605701.326902733082.8435284786616

Examples

			Some solutions for n=5 k=4
..0..0..0..0. .1..0..0..0. .0..0..0..0. .0..0..1..0. .0..0..0..0
..0..0..0..0. .1..0..0..0. .0..0..0..0. .0..0..1..0. .1..1..0..0
..1..0..0..0. .0..1..1..0. .0..0..1..0. .0..0..0..0. .0..0..1..0
..1..0..0..1. .0..0..0..1. .0..1..0..0. .0..1..0..1. .0..1..0..0
..0..0..0..1. .1..1..0..1. .0..0..0..0. .0..1..0..1. .0..0..1..1
		

Crossrefs

Column 1 is A000930(n+1).
Column 2 is A184884(n+1).

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +a(n-3)
k=2: a(n) = a(n-1) +2*a(n-2) +2*a(n-3) -a(n-4) +a(n-5)
k=3: a(n) = a(n-1) +4*a(n-2) +6*a(n-3) +3*a(n-4) -3*a(n-6) +a(n-7) -3*a(n-9) +a(n-11)
k=4: [order 21]
k=5: [order 43]
k=6: [order 85]