A296322 Number of n X 3 0..1 arrays with each 1 horizontally, vertically or antidiagonally adjacent to 2 neighboring 1s.
1, 5, 11, 23, 54, 122, 278, 634, 1438, 3274, 7451, 16943, 38547, 87691, 199477, 453789, 1032300, 2348324, 5342108, 12152500, 27645148, 62888676, 143062485, 325446157, 740342261, 1684169937, 3831239423, 8715507347, 19826499874, 45102377086
Offset: 1
Keywords
Examples
Some solutions for n=5: ..1..1..0. .0..0..1. .0..0..0. .0..0..0. .1..1..0. .0..0..0. .0..1..0 ..1..0..0. .0..1..1. .0..0..0. .0..0..0. .1..0..0. .0..1..1. .1..1..0 ..0..0..0. .0..0..0. .0..0..0. .1..1..0. .0..1..1. .0..1..0. .0..0..0 ..0..1..0. .0..1..0. .0..0..1. .1..0..0. .1..0..1. .0..0..0. .0..1..0 ..1..1..0. .1..1..0. .0..1..1. .0..0..0. .1..1..0. .0..0..0. .1..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 3 of A296327.
Formula
Empirical: a(n) = 2*a(n-1) - a(n-2) + 4*a(n-3) - 2*a(n-4) + 4*a(n-5) - 3*a(n-6) + 2*a(n-7) - a(n-8).
Empirical g.f.: x*(1 + 3*x + 2*x^2 + 2*x^3 + x^4 - x^5 + x^6 - x^7) / ((1 + x^2)*(1 - 2*x - 2*x^3 + 2*x^4 - 2*x^5 + x^6)). - Colin Barker, Feb 23 2019