cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296327 T(n,k) = Number of n X k 0..1 arrays with each 1 horizontally, vertically or antidiagonally adjacent to 2 neighboring 1's.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 8, 11, 8, 1, 1, 15, 23, 23, 15, 1, 1, 26, 54, 61, 54, 26, 1, 1, 45, 122, 185, 185, 122, 45, 1, 1, 80, 278, 562, 853, 562, 278, 80, 1, 1, 140, 634, 1677, 3569, 3569, 1677, 634, 140, 1, 1, 245, 1438, 4998, 14691, 20088, 14691, 4998, 1438, 245, 1, 1
Offset: 1

Views

Author

R. H. Hardin, Dec 10 2017

Keywords

Comments

Table starts
.1...1....1.....1......1.......1........1.........1...........1............1
.1...3....5.....8.....15......26.......45........80.........140..........245
.1...5...11....23.....54.....122......278.......634........1438.........3274
.1...8...23....61....185.....562.....1677......4998.......14968........44818
.1..15...54...185....853....3569....14691.....62193......261763......1099727
.1..26..122...562...3569...20088...112235....643541.....3666933.....20890748
.1..45..278..1677..14691..112235...850404...6660799....51754039....401363520
.1..80..634..4998..62193..643541..6660799..72224019...769931084...8196375877
.1.140.1438.14968.261763.3666933.51754039.769931084.11207386103.163095751500

Examples

			Some solutions for n=5, k=4
..1..1..0..0. .1..1..0..1. .0..0..0..0. .0..1..1..0. .0..1..0..0
..1..0..0..0. .1..0..1..1. .0..0..0..0. .0..1..0..0. .1..1..0..0
..0..0..0..0. .0..0..0..0. .0..0..1..1. .0..0..0..0. .0..0..0..0
..0..0..1..1. .0..0..1..0. .0..1..0..1. .0..0..0..1. .1..1..0..1
..0..0..1..0. .0..1..1..0. .0..1..1..0. .0..0..1..1. .1..0..1..1
		

Crossrefs

Column 2 is A193147(n+1).

Formula

Empirical for column k:
k=1: a(n) = a(n-1).
k=2: a(n) = a(n-1) +2*a(n-3) +a(n-5).
k=3: a(n) = 2*a(n-1) -a(n-2) +4*a(n-3) -2*a(n-4) +4*a(n-5) -3*a(n-6) +2*a(n-7) -a(n-8).
k=4: [order 14].
k=5: [order 40].
k=6: [order 83].