A296327 T(n,k) = Number of n X k 0..1 arrays with each 1 horizontally, vertically or antidiagonally adjacent to 2 neighboring 1's.
1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 8, 11, 8, 1, 1, 15, 23, 23, 15, 1, 1, 26, 54, 61, 54, 26, 1, 1, 45, 122, 185, 185, 122, 45, 1, 1, 80, 278, 562, 853, 562, 278, 80, 1, 1, 140, 634, 1677, 3569, 3569, 1677, 634, 140, 1, 1, 245, 1438, 4998, 14691, 20088, 14691, 4998, 1438, 245, 1, 1
Offset: 1
Examples
Some solutions for n=5, k=4 ..1..1..0..0. .1..1..0..1. .0..0..0..0. .0..1..1..0. .0..1..0..0 ..1..0..0..0. .1..0..1..1. .0..0..0..0. .0..1..0..0. .1..1..0..0 ..0..0..0..0. .0..0..0..0. .0..0..1..1. .0..0..0..0. .0..0..0..0 ..0..0..1..1. .0..0..1..0. .0..1..0..1. .0..0..0..1. .1..1..0..1 ..0..0..1..0. .0..1..1..0. .0..1..1..0. .0..0..1..1. .1..0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..449
Crossrefs
Column 2 is A193147(n+1).
Formula
Empirical for column k:
k=1: a(n) = a(n-1).
k=2: a(n) = a(n-1) +2*a(n-3) +a(n-5).
k=3: a(n) = 2*a(n-1) -a(n-2) +4*a(n-3) -2*a(n-4) +4*a(n-5) -3*a(n-6) +2*a(n-7) -a(n-8).
k=4: [order 14].
k=5: [order 40].
k=6: [order 83].
Comments