cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296337 a(1) = a(3) = 1, a(2) = 2, a(4) = a(5) = 4; a(n) = a(n-a(n-1)) + a(n-a(n-2)) for n > 5.

Original entry on oeis.org

1, 2, 1, 4, 4, 4, 2, 8, 3, 4, 10, 10, 2, 14, 3, 4, 16, 16, 2, 20, 3, 4, 22, 22, 2, 26, 3, 4, 28, 28, 2, 32, 3, 4, 34, 34, 2, 38, 3, 4, 40, 40, 2, 44, 3, 4, 46, 46, 2, 50, 3, 4, 52, 52, 2, 56, 3, 4, 58, 58, 2, 62, 3, 4, 64, 64, 2, 68, 3, 4, 70, 70, 2, 74, 3, 4, 76, 76, 2, 80, 3, 4, 82, 82
Offset: 1

Views

Author

Altug Alkan, Dec 10 2017

Keywords

Crossrefs

Cf. A244477.

Programs

  • Mathematica
    Fold[Append[#1, #1[[#2 - #1[[#2 - 1]] ]] + #1[[#2 - #1[[#2 - 2]] ]] ] &, {1, 2, 1, 4, 4}, Range[6, 84]] (* Michael De Vlieger, Dec 11 2017 *)
  • PARI
    q=vector(10^5); q[1]=1;q[2]=2;q[3]=1;q[4]=4;q[5]=4;for(n=6, #q, q[n] = q[n-q[n-1]]+q[n-q[n-2]]); q
    
  • PARI
    Vec(x*(1 + 2*x + x^2 + 4*x^3 + 4*x^4 + 4*x^5 + 4*x^7 + x^8 - 4*x^9 + 2*x^10 + 2*x^11 - x^12 - 2*x^14) / ((1 - x)^2*(1 + x)^2*(1 - x + x^2)^2*(1 + x + x^2)^2) + O(x^40)) \\ Colin Barker, Dec 11 2017

Formula

a(6*k + 1) = 2, a(6*k - 4) = 6*k - 4, a(6*k + 3) = 3, a(6*k - 2) = 4, a(6*k - 1) = a(6*k) = 6*k - 2 for k >= 1. - Iain Fox, Dec 10 2017
From Colin Barker, Dec 11 2017: (Start)
G.f.: x*(1 + 2*x + x^2 + 4*x^3 + 4*x^4 + 4*x^5 + 4*x^7 + x^8 - 4*x^9 + 2*x^10 + 2*x^11 - x^12 - 2*x^14) / ((1 - x)^2*(1 + x)^2*(1 - x + x^2)^2*(1 + x + x^2)^2).
a(n) = 2*a(n-6) - a(n-12) for n>13.
(End)