This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296338 #72 Apr 18 2019 22:04:30 %S A296338 1,0,0,1,1,0,0,0,1,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,2,0,0,0,1,1,0,0,0,0, %T A296338 0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,1,1,0,0,0,0,0,1,0,0,1,0,0,0,0, %U A296338 0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,1,0,0,0,1,1 %N A296338 a(n) = number of partitions of n into consecutive positive squares. %H A296338 Seiichi Manyama, <a href="/A296338/b296338.txt">Table of n, a(n) for n = 1..10000</a> %F A296338 a(A034705(n)) >= 1 for n > 1. %F A296338 G.f.: Sum_{i>=1} Sum_{j>=i} Product_{k=i..j} x^(k^2). - _Ilya Gutkovskiy_, Apr 18 2019 %e A296338 1 = 1^2, so a(1) = 1. %e A296338 4 = 2^2, so a(4) = 1. %e A296338 5 = 1^2 + 2^2, so a(5) = 1. %e A296338 9 = 3^2, so a(9) = 1. %e A296338 13 = 2^2 + 3^2, so a(13) = 1. %e A296338 14 = 1^2 + 2^2 + 3^2, so a(14) = 1. %e A296338 16 = 4^2, so a(16) = 1. %e A296338 25 = 3^2 + 4^2 = 5^2, so a(25) = 2. %e A296338 29 = 2^2 + 3^2 + 4^2, so a(29) = 1. %e A296338 30 = 1^2 + 2^2 + 3^2 + 4^2, so a(30) = 1. %t A296338 nMax = 100; t = {0}; Do[k = n; s = 0; While[s = s + k^2; s <= nMax, AppendTo[t, s]; k++], {n, 1, nMax}]; tt = Tally[t]; a[_] = 0; Do[a[tt[[i, 1]]] = tt[[i, 2]], {i, 1, Length[tt]}]; Table[a[n], {n, 1, nMax}] (* _Jean-François Alcover_, Feb 04 2018, using _T. D. Noe_'s program for A034705 *) %o A296338 (Ruby) %o A296338 def A296338(n) %o A296338 m = Math.sqrt(n).to_i %o A296338 ary = Array.new(n + 1, 0) %o A296338 (1..m).each{|i| %o A296338 sum = i * i %o A296338 ary[sum] += 1 %o A296338 i += 1 %o A296338 sum += i * i %o A296338 while sum <= n %o A296338 ary[sum] += 1 %o A296338 i += 1 %o A296338 sum += i * i %o A296338 end %o A296338 } %o A296338 ary[1..-1] %o A296338 end %o A296338 p A296338(100) %Y A296338 Cf. A000290, A001227, A034705, A130052, A234304, A297199, A298467, A299173. %K A296338 nonn %O A296338 1,25 %A A296338 _Seiichi Manyama_, Jan 14 2018