A296341 Least number k such that the arithmetic derivatives of the composite numbers k-n and k+n are equal.
138004, 23, 2012, 136, 72708, 22, 1449858, 41, 264, 28, 1116, 107, 112, 44, 11752, 292, 1047798, 68, 88212, 71, 2478418, 54, 452, 119, 220, 92, 582, 592, 40284, 191, 329958, 89, 1600550, 602, 516798, 151, 2952, 140, 11434, 298, 125714, 212, 39654, 896, 822, 126
Offset: 1
Examples
a(1) = 138004 because it is the least number k such that the composites k-1 and k+1 have arithmetic derivatives (k-1)' = (k+1)'. We see that (138004 - 1)' = (138004 + 1)' = 47351; a(2) = 23 because it is the least number k such that the composites k - 2 and k+2 have arithmetic derivatives (k-2)' = (k+2)'. We see that (23 - 1)' = (23 + 1).
Programs
-
Maple
with(numtheory): P:=proc(q) local a,h,n,p; for h from 1 to q do for n from h to q do if not isprime(n-h) and (n-h)*add(op(2,p)/op(1,p),p=ifactors(n-h)[2])= (n+h)*add(op(2,p)/op(1,p),p=ifactors(n+h)[2]) then print(n); break; fi; od; od; end: P(10^9);
-
Mathematica
ad[n_] := With[{f = FactorInteger[n]}, n*Total[f[[All, 2]]/f[[All, 1]]]]; okQ[n_, k_] := If[Not[CompositeQ[k-n] && CompositeQ[k+n]], False, ad[k-n] == ad[k+n]]; a[n_] := For[k = 1, True, k++, If[okQ[n, k], Print["a(", n, ") = ", k]; Return[k]]]; Array[a, 46] (* Jean-François Alcover, Dec 20 2017 *)
Comments