cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296356 a(n) = A296354(n) - A296355(n).

Original entry on oeis.org

0, 0, 5, 3, 21, 19, 23, 11, 65, 53, 59, 72, 74, 81, 70, 31, 169, 182, 166, 176, 183, 148, 202, 188, 210, 202, 180, 228, 218, 216, 185, 79, 441, 345, 411, 467, 433, 458, 416, 475, 449, 489, 436, 461, 516, 374, 509, 462, 538, 487, 537, 505, 522, 503, 577, 560
Offset: 0

Views

Author

N. J. A. Sloane, Dec 14 2017, corrected and extended Dec 17 2017

Keywords

Comments

This is the binary "early-birdness" of n (cf. A116700, A296364).
Theorem: a(n) > 0 for all n > 1.
Proof. The claim is true for 2 <= n <= 7, so assume n >= 8, and let u = 1... denote the binary expansion of n. Let L denote the list of all binary vectors whose concatenation gives A076478.
To show a(n)>0 it is enough to exhibit a pair of successive binary vectors b, c in L whose concatenation contains a copy of u that begins in b and is such that b appears in L before u does. There are three cases.
(i) Suppose n is even, say u = 1x0. Take c = x00, and let b be the vector preceding c in L, so that b = y11, say. Then bc = y11x00 contains u.
(ii) Suppose n = 2^k-1, u = 1^k. Take b = 01^(k-1), c = 10^(k-1), so that bc = 0 1^k 0^(k-1).
(iii) Otherwise, n is an odd number whose binary expansion contains a 0, say u = 1^k 0x1. Take c = 0x10^k, and let b be the vector preceding c in L, so that b = y1^k, say, and bc = y1^k 0x10^k.
In each case we need to verify that b does appear in L before u, but we leave this easy verification to the reader. QED

Crossrefs

Extensions

More terms from Rémy Sigrist, Dec 19 2017