This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296370 #14 Aug 27 2021 01:48:15 %S A296370 1,111481,465793,79036177,1781269903307,250369632905747, %T A296370 708229497085909,15673900819204067 %N A296370 Numbers m such that 2^m == 3/2 (mod m). %C A296370 Equivalently, 2^(m+1) == 3 (mod m). %C A296370 Also, numbers m such that 2^(m+1) - 2 is a Fermat pseudoprime base 2, i.e., 2^(m+1) - 2 belongs to A015919 and A006935. %C A296370 Some larger terms (may be not in order): 2338990834231272653581, 341569682872976768698011746141903924998969680637. %H A296370 OEIS Wiki, <a href="/wiki/2^n mod n">2^n mod n</a> %F A296370 a(n) = A296104(n) - 1. %t A296370 Select[Range[10^6], Divisible[2^(# + 1) - 3, #] &] (* _Robert Price_, Oct 11 2018 *) %Y A296370 Solutions to 2^m == k (mod m): this sequence (k=3/2), A187787 (k=1/2), A296369 (k=-1/2), A000079 (k=0), A006521 (k=-1), A015919 (k=2), A006517 (k=-2), A050259 (k=3), A015940 (k=-3), A015921 (k=4), A244673 (k=-4), A128121 (k=5), A245318 (k=-5), A128122 (k=6), A245728 (k=-6), A033981 (k=7), A240941 (k=-7), A015922 (k=8), A245319 (k=-8), A051447 (k=9), A240942 (k=-9), A128123 (k=10), A245594 (k=-10), A033982 (k=11), A128124 (k=12), A051446 (k=13), A128125 (k=14), A033983 (k=15), A015924 (k=16), A124974 (k=17), A128126 (k=18), A125000 (k=19), A015925 (k=2^5), A015926 (k=2^6), A015927 (k=2^7), A015929 (k=2^8), A015931 (k=2^9), A015932 (k=2^10), A015935 (k=2^11), A015937 (k=2^12) %K A296370 nonn,more %O A296370 1,2 %A A296370 _Max Alekseyev_, Dec 11 2017