This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296372 #27 Dec 16 2018 17:42:10 %S A296372 1,1,2,4,5,4,18,31,18,8,108,208,153,56,16,778,1700,1397,616,160,32, %T A296372 6756,15980,14668,7197,2196,432,64,68220,172326,171976,93293,31564, %U A296372 7208,1120,128 %N A296372 Triangle read by rows: T(n,k) is the number of normal sequences of length n whose standard factorization into Lyndon words (aperiodic necklaces) has k factors. %C A296372 A finite sequence is normal if its union is an initial interval of positive integers. %H A296372 Andrew Howroyd, <a href="/A296372/b296372.txt">Rows n = 1..50 of triangle, flattened</a> %H A296372 Wikipedia, <a href="http://en.wikipedia.org/wiki/Lyndon_word#Standard_factorization">Lyndon word: Standard factorization</a> %e A296372 The T(3,2) = 5 normal sequences are {2,1,2}, {1,2,1}, {2,1,3}, {2,3,1}, {3,1,2}. %e A296372 Triangle begins: %e A296372 1; %e A296372 1, 2; %e A296372 4, 5, 4; %e A296372 18, 31, 18, 8; %e A296372 108, 208, 153, 56, 16; %e A296372 778, 1700, 1397, 616, 160, 32; %e A296372 6756, 15980, 14668, 7197, 2196, 432, 64; %t A296372 neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]; %t A296372 aperQ[q_]:=UnsameQ@@Table[RotateRight[q,k],{k,Length[q]}]; %t A296372 qit[q_]:=If[#===Length[q],{q},Prepend[qit[Drop[q,#]],Take[q,#]]]&[Max@@Select[Range[Length[q]],neckQ[Take[q,#]]&&aperQ[Take[q,#]]&]]; %t A296372 allnorm[n_]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]; %t A296372 Table[Length[Select[Join@@Permutations/@allnorm[n],Length[qit[#]]===k&]],{n,5},{k,n}] %o A296372 (PARI) \\ here U(n,k) is A074650(n,k). %o A296372 EulerMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i ))-1)} %o A296372 U(n,k)={sumdiv(n, d, moebius(n/d) * k^d)/n} %o A296372 A(n)={[Vecrev(p/y) | p<-sum(k=1, n, EulerMT(vector(n, n, y*U(n,k)))*sum(j=k, n, (-1)^(k-j)*binomial(j,k)))]} %o A296372 { my(T=A(10)); for(n=1, #T, print(T[n])) } \\ _Andrew Howroyd_, Dec 08 2018 %Y A296372 Row sums are A000670. %Y A296372 First column is A060223. %Y A296372 Cf. A000740, A001045, A008965, A019536, A059966, A074650, A185700, A228369, A232472, A277427, A281013, A296373. %K A296372 nonn,tabl %O A296372 1,3 %A A296372 _Gus Wiseman_, Dec 11 2017 %E A296372 Example and program corrected by _Gus Wiseman_, Dec 08 2018