This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296416 #9 Dec 11 2017 17:40:25 %S A296416 1,2,3,7,14,37,97,316,934,2362,2814,944,59,4,1,1,0 %N A296416 Number of non-isomorphic abstract almost-equidistant graphs on n vertices in R^4. A graph G is abstract almost-equidistant in R^4 if the complement of G does not contain K_3 and G does not contain K_6 nor K_{1,3,3}. %C A296416 A set of points in R^d is called almost equidistant if for any three points, some two are at unit distance. %H A296416 Martin Balko, Attila Pór, Manfred Scheucher, Konrad Swanepoel, and Pavel Valtr, <a href="https://arxiv.org/abs/1706.06375">Almost-equidistant sets</a>, arXiv:1706.06375 [math.MG], 2017. %H A296416 Martin Balko, Attila Pór, Manfred Scheucher, Konrad Swanepoel, and Pavel Valtr, <a href="http://page.math.tu-berlin.de/~scheuch/supplemental/almost_equidistant_sets/">Almost-equidistant sets [supplemental data]</a>, 2017. %Y A296416 Cf. A296414, A296415, A296417, A296418, A006785. %K A296416 nonn,fini,full %O A296416 1,2 %A A296416 _Manfred Scheucher_, Dec 11 2017