A296419 Triangle T(i,j) read by rows: Number of plane bipolar orientations with i+1 vertices and j+1 faces.
1, 1, 4, 1, 10, 50, 1, 20, 175, 980, 1, 35, 490, 4116, 24696, 1, 56, 1176, 14112, 116424, 731808, 1, 84, 2520, 41580, 457380, 3737448, 24293412, 1, 120, 4950, 108900, 1557270, 16195608, 131589315, 877262100, 1, 165, 9075, 259545, 4723719, 61408347, 614083470, 4971151900, 33803832920
Offset: 1
Examples
The triangle starts in row 1 as 1; 1, 4; 1, 10, 50; 1, 20, 175, 980; 1, 35, 490, 4116, 24696; 1, 56, 1176, 14112, 116424, 731808; 1, 84, 2520, 41580, 457380, 3737448, 24293412; 1, 120, 4950, 108900, 1557270, 16195608, 131589315, 877262100;
Links
- E. Fusy, D. Poulalhon, and G. Schaeffer, Bijective counting of plane bipolar orientations, El. Notes Discr. Math. 29 (2007) 283-287.
Programs
Formula
T(i,j) = T(j,i) = 2*(i+j-2)!*(i+j-1)!*(i+j)!/((i-1)!*i!*(i+1)!*(j-1)!*j!*(j+1)!).