cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296419 Triangle T(i,j) read by rows: Number of plane bipolar orientations with i+1 vertices and j+1 faces.

Original entry on oeis.org

1, 1, 4, 1, 10, 50, 1, 20, 175, 980, 1, 35, 490, 4116, 24696, 1, 56, 1176, 14112, 116424, 731808, 1, 84, 2520, 41580, 457380, 3737448, 24293412, 1, 120, 4950, 108900, 1557270, 16195608, 131589315, 877262100, 1, 165, 9075, 259545, 4723719, 61408347, 614083470, 4971151900, 33803832920
Offset: 1

Views

Author

R. J. Mathar, Feb 25 2018

Keywords

Examples

			The triangle starts in row 1 as
  1;
  1,   4;
  1,  10,   50;
  1,  20,  175,    980;
  1,  35,  490,   4116,   24696;
  1,  56, 1176,  14112,  116424,   731808;
  1,  84, 2520,  41580,  457380,  3737448,  24293412;
  1, 120, 4950, 108900, 1557270, 16195608, 131589315, 877262100;
		

Crossrefs

Cf. rows/columns: A006542, A047819, A107915, A140901, A140903, A140907.

Programs

  • Maple
    A296419 := proc(i,j)
        2*(i+j-2)!*(i+j-1)!*(i+j)!/(i-1)!/i!/(i+1)!/(j-1)!/j!/(j+1)! ;
    end proc:
    seq(seq(A296419(i,j),j=1..i),i=1..10) ;

Formula

T(i,j) = T(j,i) = 2*(i+j-2)!*(i+j-1)!*(i+j)!/((i-1)!*i!*(i+1)!*(j-1)!*j!*(j+1)!).