This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296430 #8 Jul 26 2021 01:13:22 %S A296430 1,2,5,8,3,1,8,6,1,0,0,5,5,6,0,9,5,7,1,8,9,0,9,6,6,0,8,2,7,9,6,6,1,1, %T A296430 9,8,7,5,4,5,9,4,1,1,2,9,8,2,6,3,1,7,9,2,5,1,5,2,0,0,3,8,0,0,0,8,1,2, %U A296430 9,4,3,5,1,5,9,8,0,7,3,0,7,0,3,1,1,9 %N A296430 Decimal expansion of ratio-sum for A296272; see Comments. %C A296430 Suppose that A = (a(n)), for n >= 0, is a sequence, and g is a real number such that a(n)/a(n-1) -> g. The ratio-sum for A is |a(1)/a(0) - g| + |a(2)/a(1) - g| + ..., assuming that this series converges. For A = A296272 we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See A296425-A296434 for related ratio-sums and A296452-A296461 for related limiting power-ratios. %e A296430 ratio-sum = 12.5831861005560957189096... %t A296430 a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5; %t A296430 a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1]*b[n]; %t A296430 j = 1; While[j < 13, k = a[j] - j - 1; %t A296430 While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; %t A296430 Table[a[n], {n, 0, k}]; (* A296272 *) %t A296430 g = GoldenRatio; s = N[Sum[- g + a[n]/a[n - 1], {n, 1, 1000}], 200] %t A296430 Take[RealDigits[s, 10][[1]], 100] (* A296430 *) %Y A296430 Cf. A001622, A296272. %K A296430 nonn,easy,cons %O A296430 2,2 %A A296430 _Clark Kimberling_, Dec 14 2017