This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296438 #11 Mar 27 2019 10:04:11 %S A296438 0,1,1,0,0,13,5,-336,-56,18593,-6735,-1598520,1192664,205475645, %T A296438 -255011835,-36324220856,62049925040,8519764352097,-18835422533375, %U A296438 -2551646722754512,6927586371061712,951619735931190157,-3077560879933239899,-432185107142832520576,1624964470900980885432 %N A296438 Expansion of e.g.f. log(1 + arctan(x))*exp(x). %H A296438 Andrew Howroyd, <a href="/A296438/b296438.txt">Table of n, a(n) for n = 0..200</a> %F A296438 E.g.f.: log(1 + i*(log(1 - i*x) - log(1 + i*x))/2)*exp(x), where i is the imaginary unit. %e A296438 E.g.f.: A(x) = x/1! + x^2/2! + 13*x^5/5! + 5*x^6/6! - 336*x^7/7! - 56*x^8/8! + ... %p A296438 a:=series(log(1+arctan(x))*exp(x),x=0,25): seq(n!*coeff(a,x,n),n=0..24); # _Paolo P. Lava_, Mar 27 2019 %t A296438 nmax = 24; CoefficientList[Series[Log[1 + ArcTan[x]] Exp[x], {x, 0, nmax}], x] Range[0, nmax]! %t A296438 nmax = 24; CoefficientList[Series[Log[1 + I (Log[1 - I x] - Log[1 + I x])/2] Exp[x], {x, 0, nmax}], x] Range[0, nmax]! %o A296438 (PARI) my(ox=O(x^30)); Vecrev(Pol(serlaplace(log(1 + atan(x + ox)) * exp(x + ox)))) \\ _Andrew Howroyd_, Dec 12 2017 %Y A296438 Cf. A009371, A009374, A009390, A110708, A279927, A296439. %K A296438 sign %O A296438 0,6 %A A296438 _Ilya Gutkovskiy_, Dec 12 2017