This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296462 #7 Dec 13 2017 18:36:25 %S A296462 0,2,12,238,9912,708282,77392260,12002011110,2507167177200, %T A296462 678724656721650,231129344455890300,96694934804540934750, %U A296462 48752132066414189721000,29154453671147281799726250,20403607225475633039372992500,16520371586328834323725749873750,15322889489994265975004588078700000 %N A296462 Expansion of e.g.f. arcsin(x)*arctanh(x) (even powers only). %F A296462 E.g.f.: arcsinh(x)*arctan(x) (even powers only, absolute values). %F A296462 E.g.f.: i*(log(1 - x) - log(1 + x))*log(i*x + sqrt(1 - x^2))/2, where i is the imaginary unit (even powers only). %F A296462 a(n) ~ Pi * (2*n-1)! / 2. - _Vaclav Kotesovec_, Dec 13 2017 %e A296462 arcsin(x)*arctanh(x) = 2*x^2/2! + 12*x^4/4! + 238*x^6/6! + 9912*x^8/8! + 708282*x^10/10! + ... %t A296462 nmax = 16; Table[(CoefficientList[Series[ArcSin[x] ArcTanh[x], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}] %t A296462 nmax = 16; Table[(CoefficientList[Series[I (Log[1 - x] - Log[1 + x]) Log[I x + Sqrt[1 - x^2]]/2, {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}] %Y A296462 Cf. A001818, A009744, A009747, A010050, A012723, A296463. %K A296462 nonn %O A296462 0,2 %A A296462 _Ilya Gutkovskiy_, Dec 13 2017