This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296464 #7 Dec 13 2017 18:36:40 %S A296464 1,2,28,1024,71632,8192736,1392793920,330041217024,104069101383936, %T A296464 42159457593506304,21346870862961183744,13213529766600134344704, %U A296464 9818417126704155249954816,8625630408510010165396070400,8844234850947343105068735283200,10467364426053362392901751845683200 %N A296464 Expansion of e.g.f. arcsin(arcsin(x)) (odd powers only). %F A296464 E.g.f.: arcsinh(arcsinh(x)) (odd powers only, absolute values). %F A296464 E.g.f.: -i*log(log(i*x + sqrt(1 - x^2)) + sqrt(1 + log(i*x + sqrt(1 - x^2))^2)), where i is the imaginary unit (odd powers only). %F A296464 a(n) ~ sqrt(2) * (2*n)! / (sqrt(Pi*sin(2)*n) * sin(1)^(2*n)). - _Vaclav Kotesovec_, Dec 13 2017 %e A296464 arcsin(arcsin(x)) = x/1! + 2*x^3/3! + 28*x^5/5! + 1024*x^7/7! + 71632*x^9/9! + ... %t A296464 nmax = 16; Table[(CoefficientList[Series[ArcSin[ArcSin[x]], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}] %t A296464 nmax = 16; Table[(CoefficientList[Series[-I Log[Log[I x + Sqrt[1 - x^2]] + Sqrt[1 + Log[I x + Sqrt[1 - x^2]]^2]], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}] %Y A296464 Cf. A001818, A003712, A012063, A296466. %K A296464 nonn %O A296464 0,2 %A A296464 _Ilya Gutkovskiy_, Dec 13 2017