This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296469 #17 Jul 25 2021 22:38:21 %S A296469 3,8,7,0,2,3,6,0,7,9,7,9,5,9,5,9,3,2,3,2,8,2,0,5,2,3,1,1,7,8,3,9,9,5, %T A296469 0,1,3,8,5,6,7,3,9,8,3,0,0,9,7,2,3,1,9,9,4,3,0,1,0,8,7,6,5,5,9,5,8,0, %U A296469 5,4,5,4,0,6,7,3,8,5,3,9,0,5,8,8,6,2 %N A296469 Decimal expansion of ratio-sum for A295862; see Comments. %C A296469 Suppose that A = (a(n)), for n >= 0, is a sequence, and g is a real number such that a(n)/a(n-1) -> g. The ratio-sum for A is |a(1)/a(0) - g| + |a(2)/a(1) - g| + ..., assuming that this series converges. For A = A295862, we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See A296425-A296434 for related ratio-sums and A296452-A296461 for related limiting power-ratios. Guide to more ratio-sums and limiting power-ratios: %C A296469 **** %C A296469 Sequence A ratio-sum for A limiting power-ratio for A %C A296469 A295862 A296469 A296470 %C A296469 A295947 A296471 A296472 %C A296469 A295948 A296473 A296474 %C A296469 A295949 A296475 A296476 %C A296469 A295950 A296477 A296478 %C A296469 A295951 A296479 A296480 %C A296469 A295952 A296481 A296482 %C A296469 A295953 A296483 A296848 %C A296469 A295960 A296485 A296486 %C A296469 A293076 A296487 A296488 %C A296469 A293358 A296489 A296490 %C A296469 A294170 A296491 A296492 %C A296469 A296555 A296493 A296494 %C A296469 A294414 A296495 A296496 %C A296469 A294541 A296497 A296498 %C A296469 A294546 A296499 A296500 %C A296469 A294552 A296501 A296494 %C A296469 A296776 A298171 A298172 %C A296469 A294553 A296503 A296504 %C A296469 A296556 A296565 A296566 %C A296469 A296557 A296567 A296568 %C A296469 A296558 A296569 A296570 %e A296469 ratio-sum = 6.21032710946618494227967... %t A296469 a[0] = 1; a[1] = 3; b[0] = 2; b[1 ] = 4; b[2] = 5; %t A296469 a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n]; %t A296469 j = 1; While[j < 13, k = a[j] - j - 1; %t A296469 While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; %t A296469 Table[a[n], {n, 0, k}]; (* A295862 *) %t A296469 g = GoldenRatio; s = N[Sum[- g + a[n]/a[n - 1], {n, 1, 1000}], 200] %t A296469 Take[RealDigits[s, 10][[1]], 100] (* A296469 *) %Y A296469 Cf. A001622, A296284, A296470. %K A296469 nonn,easy,cons %O A296469 1,1 %A A296469 _Clark Kimberling_, Dec 18 2017